News — thulium laser fiber

The Devitrification Cascade -- Blast Shield Disease & Contagion

2100nm AccuFlex Accumax AccuTrac ACMI laser fiber calculase dornier Duotome EndoBeam Flexiva Holmium Fiber Holmium Laser holmium laser fiber karl storz laser fiber Laser Lithotripsy Lasersafe litho laser Lumenis medilase medilase H20 OmniPulse Optifiber ProFlex ProFlex LLF quanta laser richard wolf scope safe Scopesafe Slimline stonelight SureFlex Thulium thulium laser thulium laser fiber TracTip Trimedyne yellowstone

The Devitrification Cascade -- Blast Shield Disease & Contagion

Initiation, Progression and Transmission of Holmium Laser Blast Shield Failures My business partner has repeatedly told me not to assume that others know what I know – “Get the information out there, Stephen. Much that you take for granted is new and valuable to others.” It’s hard to know what these nuggets of value are. I am usually enlightened by a customer question, complaint or concern. That is the case for this blog post examining blast shield and fiber failures as an outbreak of disease. While the outbreak described progressed rapidly due to sharing reusable fibers between laser generators, small outbreaks may also...

Read more →


All Holmium Laser Fibers are the Same, Right? Part 8: Moses and the Stones

2100nm AccuFlex AccuTrac ACMI laser fiber calculase dornier EndoBeam Flexiva Holmium Fiber Holmium Laser holmium laser fiber karl storz laser fiber Laser Lithotripsy Lasersafe litho laser Lumenis medilase medilase H20 OmniPulse Optifiber ProFlex ProFlex LLF ProGlide richard wolf Scopesafe Slimline stonelight SureFlex Thulium thulium laser thulium laser fiber Trimedyne yellowstone

All Holmium Laser Fibers are the Same, Right? Part 8: Moses and the Stones

Losses due to boiling water in surgery can be much larger than most surgeons appreciate and, in some cases these losses approach the total pulse energy, rendering laser surgery ineffective. It is important to know the variables affecting boiling losses and how to negotiate around these losses to optimize efficacy in laser lithotripsy.

Read more →


All Holmium Laser Fibers are the Same, Right? Part 7: Cladding Modes

AccuTrac ACMI laser fiber calculase EndoBeam Flexiva Holmium Fiber Holmium Laser holmium laser fiber karl storz laser fiber Laser Lithotripsy Lasersafe litho laser Lumenis medilase medilase H20 Optifiber ProFlex ProFlex LLF ProGlide quanta laser richard wolf Scopesafe SideLite Single Use LLF IFU stonelight SureFlex Thulium thulium laser thulium laser fiber Trimedyne yellowstone

All Holmium Laser Fibers are the Same, Right? Part 7: Cladding Modes

All Holmium Laser Fibers are the Same, Right? Part 7: Cladding Modes Ignorance of reality yields solutions that function solely as fantasy. What are ‘Cladding Modes’? ‘Cladding modes’ are almost universally misunderstood as being light rays or modes of propagation that are contained solely within the fiber cladding. https://www.youtube.com/watch?v=I6yjDPo4AHg Snell’s law precludes the containment described in this video (Figure 1 is adapted from the video), a video that is representative of the majority of descriptions one finds for ‘cladding modes’ in the literature.    Figure 1: Classic example of oversimplified and erroneous depiction of ‘cladding modes’ While it is possible to...

Read more →


“All Holmium Laser Fibers are the Same, Right?” Part 6: Minding the Gap

2100nm ACMI laser fiber calculase EndoBeam Fiber Flexiva Holmium Fiber Holmium Laser holmium laser fiber karl storz Laser laser fiber Laser Lithotripsy Lasersafe litho laser Lumenis medilase medilase H20 OmniPulse Optifiber ProFlex ProFlex LLF quanta laser Scopesafe Slimline stonelight SureFlex Thulium thulium laser thulium laser fiber Trimedyne yellowstone

“All Holmium Laser Fibers are the Same, Right?” Part 6: Minding the Gap

  FIGURE 1: Fiber Sleeved with Quartz Ferrule The gap (FIG. 1) between the fiber and the quartz ferrule is a fundamental problem of quartz sleeved fibers because that gap harbors volatile and non-volatile contaminants from production or cleaning. These contaminants are inevitably vaporized and deposit on the blast shield or focusing optic or both. In extreme cases, thermal expansion of materials within the gap can fracture the fiber or the quartz sleeve.   Fusing the fiber within the bore of the quartz ferrule eliminates the gap, but new issues arise from fusion. Centricity is typically worst case after fusion...

Read more →


“All Holmium Laser Fibers are the Same, Right?” Part 5: Beyond Air Well Terminations

AccuFlex AccuTrac ACMI laser fiber calculase EndoBeam Flexiva Holmium Fiber Holmium Laser holmium laser fiber karl storz Laser Lithotripsy Lasersafe litho laser OmniPulse Optifiber ProFlex ProFlex LLF quanta laser richard wolf Scopesafe Slimline stonelight SureFlex Thulium thulium laser fiber Trimedyne yellowstone

“All Holmium Laser Fibers are the Same, Right?” Part 5: Beyond Air Well Terminations

FIGURE 1: Trimedyne Holmium Fiber Connector (1991 to Present) Another common termination had its genesis (for holmium laser fibers) at Trimedyne right around 1990 (U. S. Patent No. 5,179,610, Milburn, et al., Figure 1). Trimedyne’s solution is elegant; if a bit over the top for 80W. Knowing that the OmniPulse™ holmium laser presented a laser focal spot that is too large to couple to smaller fibers, and knowing that the laser focus tended to bloom and drift due to localized thermal gradients within the laser rod(s), Trimedyne’s engineers decided to capture and reroute the energy that overfilled the Fiber Aperture....

Read more →